top of page

Publications and Datasets
* indicates the student I advised

2024

  • [29] Kay, J. E., Y.-C. Liang, S.-N. Zhou*, and N. Maher, 2024: Sea ice feedbacks cause more greenhpuse cooling than greenhouse warming at high northern latitudes on multi-century timescales, Environmental Research: Climate, 3, 041003 (WebLink).

  • [28] Liao, P.-S., C.-W. Lan, Y.-C. Liang, M.-H. Lo, 2024: Exploring the Factors Controlling the Annual Range of Amazon Precipitation, Journal of Climate, 37, 3563-3576 (WebLink).

  • [27] Wu, Y.-T.*, Y.-C. Liang, M. Previdi, L. M. Polvani, M. R. England, M. Sigmond, and M.-H. Lo, 2024: Stronger Arctic amplification from anthropogenic aerosols than from greenhouse gases, NPJ Climate and Atmospheric Science, 129, 142 (PDFWebLink).

  • [26] Xiao, H.-M., H.-H. Hsu, T.‐H. Lee, B.‐T. Jong, J.‐Y. Yu, Y.‐C. Liang, and M.‐H. Lo, 2024: The remote response in the Northern Pacific climate during winter to deforestation in the Maritime Continent, Journal of Geophysical Research: Atmospheres, 129, e2023JD040372 (WebLink).

  • [25] Chen, Y.-C., Y.-C. Liang, C.-M. Wu, J.-D. Huang, S. H. Lee, Y. Wang, and Y.-J. Zeng, 2024: Exploiting a variational auto-encoder to represent the evolution of sudden stratospheric warmings, Environmental Research: Climate, 3, 025006 (WebLink).

  • [24] Loi, C. L.*,  C.‐C. Wu, and Y.‐C. Liang, 2024: Prediction of tropical cyclogenesis based on machine learning methods and its SHAP interpretation, Journal of Advances in Modeling Earth Systems, 16, e2023MS003637 (WebLink).

  • [23] Ghosh, R., E. Manzini, Y. Gao, G. Gastineau, A. Cherchi, C. Frankignoul, Y.-C. Liang, Y.-O. Kwon, L. Suo, E. Tyrlis, J. V. Mecking, T. Tian, Y. Zhang, and D. Matei, 2024: Observed winter Barents Kara Sea ice variations induce prominent sub-decadal variability and a multi-decadal trend in the Warm Arctic Cold Eurasia pattern, Environmental Research Letters, 19, 024018 (PDFWebLink).

  • [22] Liang, Y.-C., Y.-O. Kwon, C. Frankignoul, G. Gastineau, K. L. Smith, L. M. Polvani, L. Sun, Y. Peings, C. Deser, R. Zhang, and J. Screen, 2024: The weakening of the stratosspheric vortex and the subsequent surface impacts as consequences to Arctic sea-ice loss, Journal of Climate, 37, 309-333 (PDF, WebLink).

2023

  • [21] Zhou, S.-N.*, Y.-C. Liang, I. Mitevski, and L. M. Polvani, 2023: Stronger Arctic amplification produced by decreasing, not increasing, CO2 concentrations, Environmental Research: Climate, 2, 045001 (PDF, WebLink).

  • [20] Gastineau, G., C. Frankignoul, Y. Gao, Y.-C. Liang, Y.-O. Kwon, A. Cherchi, R. Ghosh, E. Manzini, D. Matei, J. Mecking, L. Suo, S. Yang, and Y. Zhang, 2023: Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014, The Cryosphere, 17, 2157-2184 (PDF, WebLink).

  • [19] Wu, Y.-T.*, Y.-C. Liang, Y.-N. Kuo, F. Lehner, M. Previdi, L. M. Polvani, M.-H. Lo, and C.-W. Lan, 2023: Exploiting SMILEs and the CMIP5 archive to understand Arctic climate change seasonality and uncertainty, Geophysical Research Letters, 50, e2022GL100745 (PDF, WebLink).

2022

  • [18] Suo, L., Y. Gao, G. Gastineau, Y.-C. Liang, R. Ghosh, T. Tian, Y. Zhang, Y.-O. Kwon, D. Matei. O. H. Otterå, and S. Tang, 2022: Arctic troposphere warming driven by external radiative forcing and modulated by the Pacific and Atlantic, Journal of Geophysical Research: Atmospheres, 127, e2022JD036679 (PDF, WebLink).

  • [17] Suo, L., G. Gastineau, Y. Gao, Y.-C. Liang, R. Ghosh, T. Tian, Y. Zhang, Y.-O. Kwon, O. H. Otterå, and S. Tang, 2022: Simulated contribution of the interdecadal Pacific oscillation to the west Eurasia cooling in 1998-2013, Environmental Research Letters, 17, 094021 (PDF, WebLink).

  • [16] Liang, Y.-C., L. M. Polvani, and I. Mitevski, 2022: Arctic amplification, and its seasonal migration, over a wide range of CO2 forcing, NPJ Climate and Atmospheric Science, 5, 14 (PDF, WebLink).

  • [15] Liang, Y.-C., L. M. Polvani, M. Previdi, K. L. Smith, M. R. England, and G. Chiodo, 2022: Stronger Arctic amplification from ozone-depleting substances than from carbon dioxide. Environmental Research Letters, 17, 024010 (PDF, WebLink).

2021

  • [14] Kuo, Y.-N., M.-H. Lo, Y.-C. Liang, Y.-H. Tseng, and C.-W. Hsu, 2021: Terrestrial water storage anomalies emphasize interannual variations in global mean sea level during 1997–1998 and 2015–2016 El Nino events. Geophysical Research Letters, 48, e2021GL094104, https://doi.org/10.1029/2021GL094104 (WebLink).

  • [13] Liang, Y.-C., C. Frankignoul, Y.-O. Kwon, G. Gastineau, E. Manzini, G. Danabasoglu, L. Suo, S. Yeager, Y. Gao, J. J. Attema, A. Cherchi, R. Ghosh, D. Matei, J.V. Mecking, T. Tian, and Y. Zhang, 2021: Impacts of Arctic Sea Ice on Cold Season Atmospheric Variability and Trends Estimated from Observations and a Multi-model Large Ensemble, Journal of Climate, 34, 8419-8443, https://doi.org/10.1175/JCLI-D-20-0578.1 (PDFWebLink).

  • [12] Liang, Y.-C., Y.-O. Kwon, and C. Frankignoul, 2021: Autumn Arctic Pacific sea-ice dipole as a source of predictability for subsequent spring Barents sea-ice condition, Journal of Climate, 34, 787-804, https://doi.org/10.1175/JCLI-D-20-0172.1 (PDFWebLink).

2020

  • [11] Liang, Y.-C., M.-H. Lo, C.-W. Lan, H. Seo, C. C. Ummenhofer, S. Yeager, R.-J. Wu, and J. D. Steffen, 2020: Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region, Nature Communications, 11, 4390, https://doi.org/10.1038/s41467-020-18187-0 (PDF, WebLink).

  • [10] Tseng, Y.-H., R. Ding, S. Zhao, Y.-C. Kuo, and Y.-C. Liang, 2020: Could the North Pacific Oscillation be modified by the initiation of East Asian winter monsoon? Journal of Climate, 33, 2389-2406, https://doi.org/10.1175/JCLI-D-19-0112.1 (PDF, WebLink).

  • [9] Liang, Y.-C., Y.-O. Kwon, C. Frankignoul, G. Danabasoglu, S. Yeager, A. Cherchi, Y. Gao, G. Gastineau, R. Ghosh, D. Matei, J. V. Mecking, D. Peano, L. Suo, and T. Tian, 2020: Quantification of the Arctic sea ice-driven atmospheric circulation variability in coordinated large ensemble simulations, Geophysical Research Letters, 47, https://doi.org/1029/2019GL085397 (PDF, WebLink).

2012-2019

  • [8] Chen, C.-C., M.-H. Lo, E.-S. Im, J.-Y. Yu, Y.-C. Liang, W.-T. Chen, I. Ping, C.-W. Lan, R.-J. Wu, and R.-Y. Chien, 2019: Thermodynamic and dynamic responses to deforestation in the Maritime Continent: A modeling study, Journal of Climate, 32, 3505-3527, https://doi.org/10.1175/JCLI-D-18-0310.1 (PDF, WebLink).

  • [7] Liang, Y.-C., M. R. Mazloff, I. Rosso, S.-W. Fang, and J.-Y. Yu, 2018: A multi-variate empirical orthogonal function method to construct nitrate maps in the Southern Ocean, Journal of Atmospheric and Oceanic Technology35, 1505-1519, https://doi.org/10.1175/JTECH-D-18-0018.1 (PDF, WebLink). 

  • [6] Liang, Y.-C., J.-Y. Yu, E. S. Saltzman, and F. Wang, 2017: Linking the Tropical Northern Hemisphere pattern to the Pacific warm blob and Atlantic cold blob, Journal of Climate, 30, 9041-9057, https://doi.org/10.1175/JCLI-D-17-0149.1 (PDF, WebLink).

  • [5] Liang, Y.-C., C.-C. Chou, J.-Y. Yu, and M.-H. Lo, 2016: Mapping the locations of asymmetric and symmetric discharge responses in global rivers to the two types of El Niño, Environmental Research Letters, 11https://doi.org/10.1088/1748-9326/11/4/044012 (PDFWebLink).

  • [4] Liang, Y.-C., J.-Y. Yu, M.-H. Lo, and C. Wang, 2015: The changing influence of El Niño on the Great Plains Low-Level Jet, Atmospheric Science Letters, 16, 512-517, https://doi.org/10.1002/asl.590 (PDF, WebLink).

  • [3] Liang, Y.-C., M.-H. Lo, and J.-Y. Yu, 2014: Asymmetric responses of land hydroclimatology to two types of El Niño in the Mississippi river basin, Geophysical Research Letters, 41, 582-588, https://doi.org/10.1002/2013GL058828 (PDF, WebLink).

  • [2] Young, C.-C., Y.-C. Liang, Y.-H. Tseng, and C.-H. Chow, 2014: Characteristics of the RAW-filtered leapfrog time-stepping scheme in the ocean general circulation model, Monthly Weather Review, 42, 434-447, https://doi.org/10.1175/MWR-D-12-00333.1 (PDFWebLink).

  • [1] Young, C.-C., Y.-H. Tseng, M.-L. Shen, Y.-C. Liang, M.-H. Chien, and C.-.H Chien, 2012: Software development of the TaIwan Multi-scale Community Ocean Model (TIMCOM), Environmental Modelling and Software, 38, 214-219, https://doi.org/10.1016/j.envsoft.2012.05.017 (PDFWebLink).

Datasets

bottom of page